Modification of a Bruker APEX Duo Diffractometer for Variable Temperature, Solvated Powder X-Ray Diffraction and Synchrotron Screening ASHLEY C. FELTS, MATTHEW J. ANDRUS, ANNALIESE E. THUIJS, DAISUKE TAKAHASHI, AND KHALIL A. ABBOUD UNIVERSITY OF FLORIDA, CENTER FOR X-RAY CRYSTALLOGRAPHY

SAMPLE SETUP

Polycrystalline powder samples are loaded in sodium borosilicate capillaries through a wide mouth (a). Gentle vibration is applied to the body of the capillary using the side of a pair of tweezers to work the sample to the sealed base of the capillary. The capillary is cropped and loaded into a goniometer containing wax. A soldering iron is used to melt the wax and seal the capillary in place (b).

For solvated samples, the capillary is cropped prior to sample loading. The sealed end is removed to retain the wide mouthed end. The new base is sealed using a Bunsen burner before the sample is loaded (c).

A side by side comparison of the goniometer setup is shown for (d) a solvated powder sample and (e) a standard single crystal measurement.

For powder measurements, detector distance is set to 150 mm, detector format is 1024x1024. Cu source is used.

OUR TEAM / REFERENCES AND ACKNOWLEDGEMENTS

X-Ray The Center for Crystallography is a team consisting of:

Director Khalil A. Abboud, Ph.D. Graduate Assistants Ashley C. Felts Daisuke Takahashi

EXPERIMENTAL SETUP AND DATA

	Operation	Active	Distance [mm]	2Theta [deg]	Omega [deg]	Phi [deg]
1	Anode	Yes	Anode:	Cu		
2	Thermostat	Yes	Target [K]:	300.0	Rate [K/hour]:	
3	Phi 360	Yes	50.000	-12.000	174.000	
4	Phi 360	Yes	50.000	-24.000	168.000	
5	Phi 360	Yes	50.000	-36.000	162.000	
6	Phi 360	Yes	50.000	-48.000	156.000	
7	Phi 360	Yes	50.000	-60.000	150.000	
8	Phi 360	Yes	50.000	-72.000	144.000	
9	No Operation	Yes				
10	Phi 360	Yes	50.000	-12.000	174.000	
11	Phi 360	Yes	50.000	-24.000	168.000	
12	Phi 360	Yes	50.000	-36.000	162.000	
13	Phi 360	Yes	50.000	-48.000	156.000	
14	Phi 360	Yes	50.000	-60.000	150.000	
15	Phi 360	Yes	50.000	-72.000	144.000	
16	No Operation	Yes				
17	Phi 360	Yes	50.000	-12.000	174.000	
18	Phi 360	Yes	50.000	-24.000	168.000	
19	Phi 360	Yes	50.000	-36.000	162.000	
20	Phi 360	Yes	50.000	-48.000	156.000	
21	Phi 360	Yes	50.000	-60.000	150.000	
22	Phi 360	Yes	50.000	-72.000	144.000	
23	No Operation	Yes				
24	Position	Yes	50.000	0.000	0.000	
25	No Operation	Yes				

Example of an experiment for a solvated powder sample at room temperature. Phi 360 measurements are utilized for samples which tend towards preferred orientation.

Additional lines may be used to ramp temperature, hold for sample equilibration, or position the sample.

An example of a powder diffraction pattern obtained using the Bruker APEX Duo.

Images are combined using the Pilot portion of APEX II, and then integrated. The files can be saved as .raw files to be handled in other software.

U.S. DEPARTMENT OF ENERGY							
The University of Florida							
ENTER FOR TOMORROW'S MATERIALS							

University of Florida Dept. of Chemistry Dr. Daniel R. Talham, Akhil R. Ahir, John M. Cain

University of Florida Dept. of Physics Dr. Mark W. Meisel

Argonne National Laboratory Dr. Gregory J. Halder, Dr. Andrey A. Yakovenko, Dr. Wengian Xu

- 1.) *Science.* **1996**, 272, 704

2.) J. Am. Chem. Soc, **2010**, 132, 4048 3.) J. Electrochem. Soc. **1997**, 144, 1, L11 4.) E.S. Knowles, Ph.D. Dissertation, University of Florida, 2013 5.) J. Am. Chem. Soc., **2014**, 136, 15660

About the Materials work performed under the advisement of Dr. Daniel R. Talham.

PBA's General formula $A_i M_k^{\prime\prime\prime\prime\prime} (CN)_6]_{\prime\prime} n H_2 O$

 M^{3+} C N M^{2+} N C M^{3-} **M**^{II} and **M'**^{II} determine the identity of the analogue, referred to as **MM'** - PBA.

Charge balance necessitates interstitial alkali cations (A) or [M'(CN)₆] vacancies, where water coordinates instead.

This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357

DEPARTMENT of CHEMISTRY

Screening for Synchrotron Experiments

Cobalt Hexacyanoferrate (CoFe-PBA)

state:

300 -

i 200⊢

CoFe-PBA exhibits a photo-induced (PI) increase in magnetization due to a Charge-Transfer Induced Spin Transition (CTIST), where it is switched between a low-spin (LS) and a high-spin (HS)

 Co^{III} (LS) – Fe^{III} (LS) $\leftarrow Co^{III}$ (HS) – Fe^{IIII} (LS)

The CTIST of CoFe-PBA is associated with a large change in the cubic unit cell parameter, a, from a_{LS}=9.96 A in the LS state to a_{HS}=10.30 A in the HS state, corresponding to a significant change in volume (~10%).

The CTIST can be induced with a variety of stimuli including light, change in temperature, and change in pressure.

